

individual's human tolerance. In spite of this, it is possible to strive for greater possibility of survival by improved design. A new form of engineering analysis is available in the form of an inverted checklist. By predicated an injury to some portion of the body, the possible causes can be reckoned and then methodically eliminated.

Acknowledgments

The author is indebted to many people, especially colleagues in the pathology and radiology departments, and to Dr. John Stapp and Dr. Leon Kazarin.

References

- ¹Desjardins, S. P., et al., "Aircraft Crash Survival Design Guide," Simula Inc., Tempe, Ariz., U.S. Army (AVRADCON) Final Rept. USARTL-TR-79-22A, Dec. 1980.
- ²"Reel, Shoulder Harness, Inertia Lock," U. S. Army, AMSAVERs, St. Louis, Mo., MIL-R-8236D, Dec. 1975.
- ³"General Specification for Seat System, Upward Ejection, Aircraft," U. S. Air Force, A&D/FTZS, Wright-Patterson, AFB, Ohio, MIL-S-9479B, June 1973.
- ⁴"Helmet Shell Assemblies, Pilots' Protective, APH-6 Series," Naval Air Systems Command, Washington, D. C., MIL-H-22995A (AS), April 1969.
- ⁵"Seat System: Aircrew Non-ejection, Crashworthy," U. S. Army, DRDAV-ERS, St. Louis, Mo., MIL-S-58095 (AV), Aug. 1971.
- ⁶Kallieris, D. and Schmidt, G., "Bending Tests and Mineral Salt Content Investigation of Ribs by Crash Test," 10th Annual Meeting, International Workshop on Human Subjects or Biomechanics Research, Univ. of Heidelberg, FRG, Oct. 1982.
- ⁷Kazarin, L. E., "F/FB-111 Escape Injury Mechanism Assessment," AMRL-TR-77-60, Wright-Patterson Air Forces Base, Ohio, Oct. 1977.
- ⁸"Aeronautics and Space," 14 CFR1.1, Parts 1 to 59, U. S. Government Printing Office, Washington, D. C., Jan. 1984.
- ⁹"Prototype Development Passive, Seat-mounted Limb Retention System," Stencil Aeronautical Engineering Corp., Arden, N. C., NADC Rept. 79201-60, May 1979.
- ¹⁰Guill, F. C., "Aircrew Automated Escape Systems," 17th Annual Failsafe Meeting, Corpus Christi, Texas, Feb. 1982.
- ¹¹Fleming, C., "Ejection Problems and 'Injuries': Their Causes, Effects and Treatments, and Suggestions for Preventive Measures," Aviation Space and Environmental Medicine, Gibbs-Inman Co., Louisville, Ky., Aug. 1979, pp. 829-833.
- ¹²Kulp, C.R. Jr., "An Experimental and Finite Element Analysis of the Anisotropic Behavior of Four Human Long Bones," Ph.D. Thesis, University of Kansas, Lawrence, Kan., Sept. 1982.
- ¹³"Light Fixed-and Rotary-Wing Aircraft Crashworthiness," U. S. Army, AMSA-ES, St. Louis, Mo., 63166, MIL-STD-1290 (AV), Jan. 1974.
- ¹⁴"System Safety Program Requirements," U. S. Air Force, AFSC/SDOS, Washington, D. C., MIL-STD-882A, June 1977.
- ¹⁵"Aircrew Station Geometry for Military Aircraft," U. S. Navy, Naval Air Engineering Center, Lakehurst, N. J., MIL-STD-1333A, June 1976.

Errata

High-Lift Airfoil Design from the Hodograph

M.J. Cohen

Ben-Gurion University of the Negev, Beersheva, Israel

[J. Aircraft, 21, 760-766 (1984)]

In the above paper, Eq. 23 and the two Equations that follow it were printed incorrectly. The correct Equations appear below.

$$\Delta\xi_1 = \int_0^{\eta_{20}} K \begin{pmatrix} \sin \\ -\cos \end{pmatrix} \Theta \cdot d\eta_2$$

$$\Delta\eta_1 = \int_0^{\eta_{20}} K \begin{pmatrix} \sin \\ \cos \end{pmatrix} \Theta \cdot d\eta_2 \quad (23)$$

where

$$K = \sqrt{\frac{(\xi_{20} - k_2)^2 + \eta_2^2}{[(\xi_{20} - \eta_2^2 - I)^2 + 4\eta_2^2\xi_{20}^2] [(\xi_{20} - k_1)^2 + \eta_2^2]}}$$

and

$$\Theta = \frac{1}{2} \left[\tan^{-1} \frac{\eta_2}{\xi_{20} - k_1} + \tan^{-1} \frac{\eta_2}{\xi_{20} - I} \right. \\ \left. + \tan^{-1} \frac{\eta_2}{\xi_{20} + I} - \tan^{-1} \frac{\eta_2}{\xi_{20} - k_2} \right]$$